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Abstract. A comparison is made between two methods of parameter estimation for analysis of
dynamic experiments in which the input function is noisy. Noise in the input function leads to
uncertainties in the calculated model-predicted values, and therefore the covariance matrix of the
residuals is a function of the model parameters. Statistical uncertainties in the model-predicted
values significantly change the nature of the fitting process and the quality of the results. The
initial method uses a weighted least-squares criterion where the weighting matrix is the inverse
of the full covariance matrix of the residuals, incorporating both the noise in the output data and
the noise in the input function. The methodology was applied to dynamic emission tomography
studies of the heart, where the blood (input) and tissue (output) tracer concentrations at each
time are derived from two regions of interest in the same tomographic section. The second
method introduces additional parameters to describe the input function, and adds terms to the
weighted sum of squares which comprise the criterion. Instead of only summing the weighted
terms to account for differences between the model and the output function, there is a second
set of terms to account for the differences between the model and the input function. The two
methods have different theoretical bases and appear to optimize different criteria, but it is shown
here that they are equivalent to one another. The criterion which they minimize is the same
under certain matrix invertibility constraints, which must be satisfied to ensure the stability of
either method.

1. Introduction

In 1986 Huesman and Mazoyer (Huesman and Mazoyer 1986, 1987) developed a method
to analyse dynamic experiments in which the input function is noisy. Noise in the input
function leads to uncertainties in the calculated model-predicted values, and therefore the
covariance matrix of the residuals is a function of the model parameters. These statistical
uncertainties in the model-predicted values significantly change the nature of the fitting
process and the quality of the results. The method developed by Huesman and Mazoyer
uses a weighted least-squares criterion where the weighting matrix is the inverse of the full
covariance matrix of the residuals, incorporating both the noise in the output data and the
noise in the input function. The methodology was applied to dynamic emission tomography
studies of the heart, where the blood (input) and tissue (output) tracer concentrations at
each time are derived from two regions of interest in the same tomographic section. Even
though only marginal reduction of variance and bias was shown, the demonstrated advantage
of considering the noise in the input function was the ability to estimate accurately the
covariance matrix of the parameter estimates.

In 1991 Chiao (Chiao 1991, Chiaoet al 1994), and, independently, Chen (Chen
et al 1991), suggested another method to analyse data with a noisy input function. The
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method developed by Chiao and Chen introduces additional parameters to describe the input
function. It also adds terms to the weighted sum of squares which comprise the criterion.
Instead of only summing the weighted terms to account for differences between the model
and the output function, there is a second set of terms to account for the differences between
the model and the input function. In this formulation, the model predicts the expected input
function as well as the output function.

There had been conjecture in our laboratory on how the solutions from these two
methods compare, and, in 1993, Chen (Chen 1993) showed that under very restrictive
conditions the results of the two methods are the same. The subject of the present work
is a proof that under very general conditions the results of the two methods are indeed the
same.

2. Formulation of the problem

Let x denote the measured input function of dimensionm, andy correspond to the measured
output function of dimensionn. Let a be a vector ofm parameters, one for each point of
the input function. Then

x = a + ex (1)

y = Ha + ey . (2)

The n × m model matrix H is a function of the compartmental parametersk. The
expectation-zero noise vectorsex andey are defined such that

〈exe
′
x〉 = 8xx (3)

〈eye
′
y〉 = 8yy (4)

〈exe
′
y〉 = 8xy . (5)

Lower case bold characters indicate vectors, upper case characters represent matrices, prime
indicates transpose and angle brackets indicate expectation.

3. Method of Huesman and Mazoyer

The original formulation of Huesman and Mazoyer minimizes the function

χ2
1(k) = ρ′8−1

ρρ ρ (6)

where

ρ = y − Hx (7)

is the vector of residuals, and

8ρρ = 8yy − 8′
xyH

′ − H8xy + H8xxH
′ (8)

is the covariance matrix of the output residual vector,ρ. Note that the covariance matrix
of the residuals changes with the parameters because8ρρ is a function ofH which is in
turn a function ofk.

If we denote the solution to the minimization of equation (6) byk̂, it was shown by
Monte Carlo simulation (Huesman and Mazoyer 1987) that the moments of the distribution
of χ2

1(k̂) are consistent with aχ2–distribution with(n − `) degrees of freedom, wherè
is the dimension of the parameter vectork. It was also shown by Monte Carlo simulation
(Huesman and Mazoyer 1987) that an estimate of the covariance matrix of the resulting
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parameterŝk is given by the inverse of half the second derivative matrix of the criterion
evaluated at the minimum, i.e.:[

1

2

∂2χ2
1(k)

∂k2

]−1

k=k̂
. (9)

The distribution of the values of̂k and the estimation of their covariance matrix by
equation (9) are expected if the data are normally distributed and the criterion is twice
the negative logarithm of the likelihood function.

4. Method of Chiao and Chen

The formulation of Chiao and Chen treats the elements of the vectora as additional
parameters to be estimated, and therefore it also considers elements of the residuals of
the input function vector as part of the weighted sum-of-squares criterion. In order to form
a single vector containing both the input and the output data vectors, let the vectorz of
dimensionm + n be defined by

z =
(

x
y

)
. (10)

The new combined residual is given by

z − Ca (11)

where the matrixC consists of

C =
(

I

H

)
(12)

andI is them × m identity matrix. The criterion function used for estimatinga andk is

χ2
2(k, a) = (z − Ca)′8−1

zz (z − Ca) (13)

where8zz is the covariance matrix of the vectorz and is given by

8zz =
(

8xx 8xy

8′
xy 8yy

)
. (14)

Note that in this case the covariance matrix of the residuals is simply the covariance matrix
of the data vectorz, since the expressionCa is not a random variable. This is the normal
situation in weighted least-squares estimation. This method avoids the complications of
a noisy input function by fitting its parameters and treating it as data like the output.
The disadvantage is that more parameters, sometimes called nuisance parameters, must be
estimated.

5. Equivalence of the methods

To show that the two methods described above are equivalent, we notice that we can
first estimate the input function parametersa for arbitrary values of the compartmental
parametersk. Minimizing equation (13) with respect toa (for fixed k) gives

â(k) = (C ′8−1
zz C)−1C ′8−1

zz z (15)
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and if equation (15) is inserted in equation (13) we get

χ2
2(k) = χ2

2(k, â(k))

= z′ [I − C(C ′8−1
zz C)−1C ′8−1

zz

]′
8−1

zz

[
I − C(C ′8−1

zz C)−1C ′8−1
zz

]
z

= z′ [8−1
zz − 8−1

zz C(C ′8−1
zz C)−1C ′8−1

zz

]
z . (16)

We now partition the matrix8−1
zz as we have partitioned8zz above

8−1
zz =

(
φxx φxy

φ′
xy φyy

)
(17)

where

φxx = (8xx − 8xy8
−1
yy 8′

xy)
−1 = 8−1

xx + 8−1
xx 8xy(8yy − 8′

xy8
−1
xx 8xy)

−18′
xy8

−1
xx (18)

φyy = (8yy − 8′
xy8

−1
xx 8xy)

−1 = 8−1
yy + 8−1

yy 8′
xy(8xx − 8xy8

−1
yy 8′

xy)
−18xy8

−1
yy (19)

φxy = − 8−1
xx 8xy(8yy − 8′

xy8
−1
xx 8xy)

−1 = −(8xx − 8xy8
−1
yy 8′

xy)
−18xy8

−1
yy (20)

and

8xx = (φxx − φxyφ
−1
yy φ′

xy)
−1 = φ−1

xx + φ−1
xx φxy(φyy − φ′

xyφ
−1
xx φxy)

−1φ′
xyφ

−1
xx (21)

8yy = (φyy − φ′
xyφ

−1
xx φxy)

−1 = φ−1
yy + φ−1

yy φ′
xy(φxx − φxyφ

−1
yy φ′

xy)
−1φxyφ

−1
yy (22)

8xy = − φ−1
xx φxy(φyy − φ′

xyφ
−1
xx φxy)

−1 = −(φxx − φxyφ
−1
yy φ′

xy)
−1φxyφ

−1
yy . (23)

Equations (14) and (17) show similar partitioning of positive definite symmetric matrices
which are inverses of each other. Derivations of the expressions given above for the
relationships between the components of these matrices can be found in Henderson and
Searle (1981).

The various parts of equation (16) can be expressed in terms of the submatrices of8−1
zz :

z′8−1
zz z = (

x′ y′ ) (
φxx φxy

φ′
xy φyy

) (
x
y

)
= x′φxxx + x′φxyy + y′φ′

xyx + y′φyyy (24)

C ′8−1
zz C = (

I H ′ ) (
φxx φxy

φ′
xy φyy

) (
I

H

)
= φxx + H ′φ′

xy + φxyH + H ′φyyH (25)

C ′8−1
zz z = (

I H ′ ) (
φxx φxy

φ′
xy φyy

) (
x
y

)
= φxxx + φxyy + H ′φ′

xyx + H ′φyyy

= (φxx + H ′φ′
xy + φxyH + H ′φyyH)x + (φxy + H ′φyy)(y − Hx)

= C ′8−1
zz Cx + (φxy + H ′φyy)(y − Hx) . (26)

We substitute equation (24) and equation (26) into equation (16) giving

χ2
2(k) = x′φxxx + x′φxyy + y′φ′

xyx + y′φyyy

− [
C ′8−1

zz Cx + (φxy + H ′φyy)(y − Hx)
]′

(C ′8−1
zz C)−1

× [
C ′8−1

zz Cx + (φxy + H ′φyy)(y − Hx)
]

= x′φxxx + x′φxyy + y′φ′
xyx + y′φyyy − x′C ′8−1

zz Cx

−x′(φxy + H ′φyy)(y − Hx) − (y − Hx)′(φxy + H ′φyy)
′x

−(y − Hx)′(φxy + H ′φyy)
′(C ′8−1

zz C)−1(φxy + H ′φyy)(y − Hx) . (27)
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Substituting equation (25) into equation (27) and collecting terms gives

χ2
2(k) = x′φxxx + x′φxyy + y′φ′

xyx + y′φyyy

−x′φxxx − x′H ′φ′
xyx − x′φxyHx − x′H ′φyyHx

−x′φxyy + x′φxyHx − x′H ′φyyy + x′H ′φyyHx

−y′φ′
xyx − y′φyyHx + x′H ′φ′

xyx + x′H ′φyyHx

−(y − Hx)′(φxy + H ′φyy)
′(C ′8−1

zz C)−1(φxy + H ′φyy)(y − Hx)

= y′φyyy − x′H ′φyyy − y′φyyHx + x′H ′φyyHx

−(y − Hx)′(φxy + H ′φyy)
′(C ′8−1

zz C)−1(φxy + H ′φyy)(y − Hx)

= (y − Hx)′
[
φyy − (φxy + H ′φyy)

′(C ′8−1
zz C)−1(φxy + H ′φyy)

]
(y − Hx)(28)

We now investigate the square bracket at the bottom of equation (28) by regrouping
terms in the expression for(C ′8−1

zz C) given by equation (25):

C ′8−1
zz C = φxx + H ′φ′

xy + φxyH + H ′φyyH

= φxx − φxyφ
−1
yy φ′

xy + (φxy + H ′φyy)φ
−1
yy (φxy + H ′φyy)

′

= 8−1
xx + (φxy + H ′φyy)φ

−1
yy (φxy + H ′φyy)

′ . (29)

Using the identity(I + AB)−1A = A(I + BA)−1, for which a derivation is given in
Henderson and Searle (1981), we can write

(C ′8−1
zz C)−1(φxy + H ′φyy) = [

8−1
xx + (φxy + H ′φyy)φ

−1
yy (φxy + H ′φyy)

′]−1
(φxy + H ′φyy)

= 8xx

[
I + (φxy + H ′φyy)φ

−1
yy (φxy + H ′φyy)

′8xx

]−1
(φxy + H ′φyy)

= 8xx(φxy + H ′φyy)
[
I + φ−1

yy (φxy + H ′φyy)
′8xx(φxy + H ′φyy)

]−1

= 8xx(φxyφ
−1
yy + H ′)

[
φ−1

yy + (φxyφ
−1
yy + H ′)′8xx(φxyφ

−1
yy + H ′)

]−1
. (30)

Multiplying equation (30) on the left by(φxy + H ′φyy)
′ we get

(φxy + H ′φyy)
′(C ′8−1

zz C)−1(φxy + H ′φyy)

= φyy(φxyφ
−1
yy + H ′)′8xx(φxyφ

−1
yy + H ′)

× [
φ−1

yy + (φxyφ
−1
yy + H ′)′8xx(φxyφ

−1
yy + H ′)

]−1

= φyy − [
φ−1

yy + (φxyφ
−1
yy + H ′)′8xx(φxyφ

−1
yy + H ′)

]−1
. (31)

The term which requires inversion in equation (30) and equation (31) can be simplified to

φ−1
yy + (φxyφ

−1
yy + H ′)′8xx(φxyφ

−1
yy + H ′)

= 8yy − 8′
xy8

−1
xx 8xy + (H ′ − 8−1

xx 8xy)
′8xx(H

′ − 8−1
xx 8xy)

= 8yy − 8′
xyH

′ − H8xy + H8xxH
′ = 8ρρ (32)

which is the covariance matrix of the residual vector given byρ = (y − Hx) which we
have denoted by8ρρ . After substituting equation (32) into equation (31) and equation (31)
into equation (28) we finally get

χ2
2(k) = (y − Hx)′

(
8yy − 8′

xyH
′ − H8xy + H8xxH

′)−1
(y − Hx)

= ρ′8−1
ρρ ρ

= χ2
1(k) . (33)

And therefore we have shown that minimization of equation (13) is equivalent to
minimization of equation (6) when the inverses of the matrices(C ′8−1

zz C) and8ρρ exist.
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The existence of the inverse of either of the matrices(C ′8−1
zz C) and 8ρρ implies the

existence of the inverse of the other. This can be seen by rewriting equation (29) and
equation (32):

C ′8−1
zz C = 8−1

xx + (φxy + H ′φyy)φ
−1
yy (φxy + H ′φyy)

′

= 8−1
xx

[
I + 8xx(φxy + H ′φyy)φ

−1
yy (φxy + H ′φyy)

′] (34)

8ρρ = φ−1
yy + (φxyφ

−1
yy + H ′)′8xx(φxyφ

−1
yy + H ′)

= [
I + φ−1

yy (φxy + H ′φyy)
′8xx(φxy + H ′φyy)

]
φ−1

yy . (35)

The terms in the square brackets of equation (34) and equation (35) can be expressed as
(I +AB) and(I +BA) respectively, and therefore their determinants are equal (Henderson
and Searle, 1981). Since8xx and φyy are invertible, the matrices(C ′8−1

zz C) and 8ρρ

either both have inverses or neither has an inverse. These matrices are functions of the
compartmental parameters,k, but not of the input function parameters,a. Values ofk for
which the matrices are not invertible are easily avoided in the iterative process of minimizing
the criterion of equation (6).

6. Discussion

We have shown that the two methods considered in this paper which analyse dynamic
experiments in which the input function is noisy are equivalent to one another. The criterion
which they minimize is the same under certain matrix invertibility constraints, which, if not
satisfied, render both methods unstable. The method of Chiao and Chen has the advantage
of a relatively straightforward theoretical basis, but the function to be minimized has many
more parameters to estimate than the initial method of Huesman and Mazoyer.

The method of Chiao and Chen has led us to a better understanding of how the input
function parameters are adjusted in order to obtain the minimized criterion value. The
resulting input function parameters can be found by substituting equation (26) into equation
(15):

â(k) = (C ′8−1
zz C)−1C ′8−1

zz z

= x + (C ′8−1
zz C)−1(φxy + H ′φyy)(y − Hx) . (36)

This can also be rewritten by substituting equation (32) into equation (30) and equation (30)
into equation (36):

â(k) = x + (8xxH
′ − 8xy)

(
8yy − 8′

xyH
′ − H8xy + H8xxH

′)−1
(y − Hx)

= x + (8xxH
′ − 8xy)8

−1
ρρ ρ . (37)

Computational efficiency compels us to minimize equation (6) for the compartmental
parameter estimateŝk, after which the resulting difference between the measured input
functionx and the estimated input function parametersâ(k̂) can be calculated from equation
(37). The covariance matrix of the compartmental parameter estimatesk̂ is estimated using
equation (9).
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